
Rust and it’s ability to insert/replace string into another string onto
specific position

Let’s say you have a string you just loaded from a file. You walk thru that file content (with a regex
match) and you want to substitude a precise location (the current match in your matches loop) for
something different ‑ a new string. You cannot use “replace all” or even “replace” approach because
itmight cause the source stringwill bemodifiedonanother placesbut your currentmatchor youneed
to compute each substitution separately so you cannot generalize the process.

In another words imagine the operation as a simple text edit done by user in a text editor ‑ you locate
the pattern, you select it with yourmouse, hit backspace andwrite in something else. The question is
how to do that in Rust since std lib (any any other as I’m aware after my crates.io research) doesn’t
offer a function like replace_at(self, start_pos, end_pos, substitution).

The solution is not a rocket science but requires some basic knowledge of bytes and strings in Rust.

1. string is a list of bytes (not chars)
2. each char in a String is represented by 1 byte as long as the character is ASCII up to 4 bytes

otherwise (because of UTF‑8)
3. indexing String is forbidden ‑ index over bytes or over chars

In our example we work with Match from Regex library which provides start() and end() posi‑
tions of thematch (and evenRangewithrange()) for suchmatch. With such infowe can cut off from
original string and then perform insertion.

Fortunatelly Vec provides niftymethod called splice which “replaces the specified range in the vector
with the given iterator”. Thatmeans you canperform“cut off” and “insert” operation in the same time
‑ conveniently.

Here is the example code with some helpful debugging.

use std::mem;
use regex::Regex;

fn main() {
let s = "Pavel X".to_string();

println!("Bytes: {:?}", &s.bytes());
println!("Length: {}", s.len());
println!("Memory size: {}", mem::size_of_val(&s));

let re = Regex::new("ave").unwrap();
let find = re.find(&s).unwrap();

1

https://crates.io
https://docs.rs/regex/latest/regex/
https://doc.rust-lang.org/std/ops/struct.Range.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.splice


let range = find.range();
println!("Regex match: {:?}", &find);
println!("Regex match bytes: {:?}", &s.as_bytes()[range.clone()]);

let mut sb = s.into_bytes();
{

let removed: Vec<_> = sb.splice(range,
"----------".bytes()).collect();↪

println!("Removed from string:{:?}", &removed);
}
println!("Final string: {}", String::from_utf8(sb).unwrap());

}

Also sits on playground.

2

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=5a0e6910789645109091fad5aa0987b5

	Rust and it's ability to insert/replace string into another string onto specific position

