
Djangomodel constraints

Django models and forms provide various options how to validate incoming data and catch data in‑
consistency. One can set up such things like:

• form field validations
• form complex (multi‑field) validations
• model validations
• model complex (multi‑field) validations
• additional manual validations in view

Those are okay, but not perfect for all possible cases. The reason is formvalidators can be bypassed in
cases where forms and ORMmodels are not used ‑ like admin (assume here you did not specify extra
form foradmin)or ‑ and themost likely ‑ directmanipulationwith thedatabase. Likedumprestoration
or import from another (3rd party) tool ‑ like psql. Those cases are out of Django app control and the
only way is to have some kind of “validations” directly in the database. That’s when constraints come
to the game.

Constraints

Django does support model constraints. That means that any constraint defined on a model is later
reflected to the database via database migrations and sits there. If you attempt to violate your rules
by inserting directly into the database you will get caught.

Let’s assume this simple model which represents Facebook’s OG tags.

class OgTag(models.Model):
page = PageField(blank=True, null=True )
url = models.CharField(blank=True, max_length=255)
name = models.CharField(max_length=50)
value = models.TextField(blank=True, null=True)
image = FilerImageField(blank=True, null=True, on_delete=models.CASCADE)
is_default = models.BooleanField(default=False)

objects = OgTagManager()

def get_image(self):
if self.image:

return self.image.url

Let’s assume the following rules:

1

https://www.postgresql.org/docs/current/ddl-constraints.html
https://docs.djangoproject.com/en/dev/ref/models/constraints/


• page and url are similar fields
• page is a list of site pages and url is for arbitrary URL
• both are mutually exclusive
• but one of them is required
• is_default is unique in a combination with value
• value and image are mutually exclusive
• but one of them is required

Those rules can be enforced quite easily with form clean() validationmethod. But you can also set
upmodel constraints that will be in sync with your database:

class OgTag(models.Model):
...

class Meta:
constraints = [

models.CheckConstraint(check=~Q(value="") |
Q(image__isnull=False), name="image_or_value"),↪

models.CheckConstraint(check=Q(value="") |
Q(image__isnull=True), name="image_or_value_not_both"),↪

models.CheckConstraint(check=~Q(url="") | Q(page__isnull=False),
name="page_or_url"),↪

models.CheckConstraint(check=Q(url="") | Q(page__isnull=True),
name="page_or_url_not_both"),↪

models.UniqueConstraint(fields=["name"],
condition=Q(is_default=True), name="unique_defaults"),↪

]

Now you just need to run database migrations and you are all set up.

Error messages

One (big) downside that comeswith constraints is that Django cannot catch, parse andmap database
errors to some sane error messages, so you just get regular database errors which lead to HTTP 5XX
error code. To prevent this, you need to reflect those constraint rules to a form validation where you
can construct user‑friendly error messages. Then you are fully set up.

2


	Django model constraints
	Constraints
	Error messages


