
Django, window functions and paginator

Some time ago I faced a strange issue. My query was completely okay but once run by Django ORM
it returned slightly modified data. Off by one value to be exact. It took me quite some time to hunt
down the bug in my code so I’m writing about that so you can save your time.

What was wrong?

I had the following SQL query

SELECT
"core_price"."id",
"core_price"."item_id",
"core_price"."datetime",
"core_price"."price",
(

100.0
* (("core_price"."price" / LEAD("core_price"."price", 1) OVER ()) -

1)↪

) AS "change"
FROM "core_price"
WHERE "core_price"."item_id" = 193
ORDER BY "core_price"."datetime" DESC;

where I fetch from core_price table and calculate percentage change of a day gains the previous
day. It’s done by window LEAD() function. Output directly from PostgreSQL CLI looked like this:

+--------+---------+------------------------+--------+---------------------
+↪

| id | item_id | datetime | price | change |
|--------+---------+------------------------+--------+---------------------

|↪

849323	193	2025-01-17 00:00:00+00	105.57	5.296230316162109
849226	193	2025-01-16 00:00:00+00	100.26	-0.4369378089904785
849129	193	2025-01-15 00:00:00+00	100.7	2.6189804077148438
849032	193	2025-01-14 00:00:00+00	98.13	1.4788031578063965
848957	193	2025-01-13 00:00:00+00	96.7	2.133500576019287
848956	193	2025-01-10 00:00:00+00	94.68	-5.622011423110962
+--------+---------+------------------------+--------+---------------------

+↪

Everything worked great until I realized that on production I was getting 500. The issue was that the
first row had empty change value which carries the output fromwindow function.

1

https://www.postgresql.org/docs/current/tutorial-window.html

Django ORM query looked like this:

self.model.objects.annotate(
change=100.0 * (F("price") / Window(Lag("price")) - 1)

)
.filter(item=user_item.item)
.order_by("-datetime")

but for some reason was giving me the following result:

+--------+---------+------------------------+--------+---------------------
+↪

| id | item_id | datetime | price | change |
|--------+---------+------------------------+--------+---------------------

|↪

849323	193	2025-01-17 00:00:00+00	105.57	<null>
849226	193	2025-01-16 00:00:00+00	100.26	-5.0298333168029785
849129	193	2025-01-15 00:00:00+00	100.7	0.4388570785522461
849032	193	2025-01-14 00:00:00+00	98.13	-2.552133798599243
848957	193	2025-01-13 00:00:00+00	96.7	-1.4572501182556152
848956	193	2025-01-10 00:00:00+00	94.68	-2.0889341831207275
+--------+---------+------------------------+--------+---------------------

+↪

How did I debug the code?

I put somebreakpoints around inmy class that extendsListView. I tried to inspectobject_list
right in my get_context_data()method but all I got was the first row with empty change col‑
umn.

Well that was weird and it got even weirder once I did print the query that Django constructed and
was sending to the database (print(self.get_queryset().query)) because the query was
identical to the first query in this article above and the empty column should be populated.

What was another level of weirdness was that the other rows had strange change values. Like what
the fuck? Then I realized that I use paginator (which I already eliminated earlier for debug purposes).
Based on the level of “WTF” that I’ve had been into I decided to turn on SQL query logging in Django
so I can see what queries are actually send to the database. Easily done by:

LOGGING["loggers"]["django.db.backends"] = {
"handlers": ["console"],
"level": "DEBUG",

2

"propagate": False,
}

in my settings file (assumes the logging is already set). This was the key move because sometimes
you think A but reality offers B.

Where is was the issue?

Iwasvery surprisedwhen I sawqueriesendingwithLIMIT 21. Also if I ranself.get_queryset()[0]
to debug the first problematic row I saw a query ending with LIMIT 1. Well here we go. The limit
completely changes the window calculation. But the bug is in different part of the query ‑ in the
ORDER BY directive.

What’s the solution?

Solution is simple ‑ the ordering must be in OVER() so each window is sorted and then calculated
correctly. Once a LIMIT is added it doesn’t affect windows. So the final query is:

SELECT
"core_price"."id",
"core_price"."item_id",
"core_price"."datetime",
"core_price"."price",
(

100.0
* (

(
"core_price"."price"
/ LEAD("core_price"."price", 1)

OVER (ORDER BY "core_price"."datetime" DESC)
)
- 1

)
) AS "change"

FROM "core_price"
WHERE "core_price"."item_id" = 193
LIMIT 10;

3

Takeaways

Themain takeaway is that once you into “WTF”moment you need to eliminate all the additional stuff
that are wrapped around current issue ‑ like the paginator. Second is to use proper debugging and
third is to dig to the deepest and rawest point ‑ in this case stop trusting ORM and seek the true SQU
query that is run against the database which can be then debugged/tuned in PostgreSQL CLI.

4

	Django, window functions and paginator
	What was wrong?
	How did I debug the code?
	Where is was the issue?
	What's the solution?
	Takeaways

