
Streamable log in browser

Is it possible to have a stream of log records in your browser just like you get with tail -f? Yes it is
and it’s not hard to do so at all.

Usage

This technique can be used for example in a case where you have a long running action and youwant
to give user a feedbackwhat the progress is andwhat’s actually going on ‑ not just a progress barwith
percentages.

Simplest example with built‑in Python server

Python provides HttpServer and BaseHTTPRequestHandler classes. The first one is a primitive
HTTP server, that can accept an HTTP request and hand it over to the second class BaseHTTPRe-
questHandlerwhich processes it and returns an HTTP response.

Baseon thisonecanwriteahandler that canexecuteanexpensiveoperation that logs through logging
module. In order to “catch” the logs a new logger needs to be introduced. Oncewe can catch the logs
we can stream into browser.

New logging handler

Very simple handler that extendslogging.StreamHandler and hands over every log that comes
into the given stream (wfile here).

class BrowserStreamHandler(logging.StreamHandler):
def __init__(self, wfile):

super().__init__()
self.wfile = wfile

def emit(self, record):
msg = self.format(record)
self.wfile.write(f'{msg}\n'.encode())
self.wfile.flush()

1

https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html#http.server.BaseHTTPRequestHandler

Primitive HTTP request handler

A simple HTTP handler that accepts GET requests, sets headers, adds the BrowserStreamHan-
dler handler to root logger, performs a long running operation that utilizes logging and removes the
handler once it’s done.

class Server(BaseHTTPRequestHandler):
def do_GET(self):

try:
self.send_response(200)
self.send_header('Content-type', 'text/plain')
self.send_header('X-Content-Type-Options', 'nosniff')
self.send_header('Cache-Control', 'no-cache')
self.end_headers()

Setting up the logger.
browser_handler = BrowserStreamHandler(self.wfile)
browser_handler.setFormatter(

logging.Formatter(
'%(asctime)s.%(msecs)06d - %(name)s - %(levelname)s -

%(message)s', '%Y-%m-%d %H:%M:%S'↪

)
)

Add logging handler to root logger to capture all messages.
root_logger = logging.getLogger()
root_logger.addHandler(browser_handler)

try:
response_data = long_running_op_with_logging(request)

finally:
root_logger.removeHandler(browser_handler)

except Exception as e:
logging.exception(e)

Somewhere over the rainbow...
def long_running_op_with_logging(request):

logging.info("log 1")
time.sleep(1)
logging.info("log 2")
time.sleep(1)
logging.info("log 3")

2

Simple HTTP server to orchestrate the whole thing.
if __name__ == '__main__':

server = HTTPServer(('0.0.0.0', 8000), Server)
LOGGER.info(f'Server started listening on {ip}:{port}')
server.serve_forever()

A few very important notes:

• header Content-typemust be either text/plain or text/html otherwise the browser
won’t stream the incomming data but wait until it’s all loaded

• in case of text/html (because you want tomake your output nice) you need to provide valid
HTML from the start

• Cache-Control header makes sure the browser won’t ever serve previously cached stream

That’s pretty much it. The handler is now able to send streams (thanks to logger that hands logging
messagesover towfile, which is thehandler output stream). Onceyouopen thepage in thebrowser,
you can see lines of logs which appear after 1 second. Looks like a magic without a single line of
Javascript.

Django implementation

To implement this mechanism in Django framework one has to realize one important thing ‑ Django
doesn’t provide a stream that logging handler can stream directly to. Instead of that, one has to cre‑
ate a queue, where a new handler will send logs to and a listener (which is a generator for Stream‑
ingHttpResponse) will pull those logs out from the queue and feed the streaming response.

On top of that, execution of long_running_op_with_logging()method must happen some‑
where else (meaning threads) because the whole code is synchronous/blocking so the code would
wait to finish the job first and then process the logging ‑> no streaming.

Once the long running operation is done a clean up is needed.

1. send None to the queue to break infinite while loop
2. close (join) the thread
3. send the rest of HTML so the page is complete in browser
4. remove handler from logger

Here is complete Django views.py (except the long_running_op_with_logging())

import logging
import queue
import threading

3

https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.StreamingHttpResponse
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.StreamingHttpResponse

from django.http import StreamingHttpResponse
from django.views.generic import View

class QueueLogHandler(logging.Handler):
"""
A logging handler utilizing a queue - every log message
it put into the queue.
"""
def __init__(self, log_queue):

super().__init__()
self.log_queue = log_queue

def emit(self, record):
self.log_queue.put(self.format(record))

class ImportClientView(View):
def get(self, request, *args, **kwargs):

1. setup streaming logging.
log_queue = queue.Queue()
queue_handler = QueueLogHandler(log_queue)
formatter = logging.Formatter('%(asctime)s - %(levelname)s -

%(message)s')↪

queue_handler.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(queue_handler)
logger.setLevel(logging.INFO)

2. run the command in a separate thread.
def run_command_and_cleanup():

try:
long_running_op_with_logging()

except Exception:
logger.error('Error calling importclient command',

exc_info=True)↪

finally:
Send None to stop streaming.
log_queue.put(None)
logger.removeHandler(queue_handler)

thread = threading.Thread(target=run_command_and_cleanup)
thread.start()

4

3. Start streaming the response to the client.
response = StreamingHttpResponse(self.generate_response(log_queue,

thread), content_type='text/html')↪

response['Cache-Control'] = 'no-cache'

return response

def generate_response(self, log_queue, thread):
yield '<!DOCTYPE html><html><head>'
yield "<meta charset='utf-8'>"
yield '<title>Streaming Logs</title>'
yield '</head><body><pre>'
yield 'Starting import...\n'

while True:
Blocks until next log message appears.
record = log_queue.get()

Stop streaming on None message.
if record is None:

break

yield f'{record}\n'

Join thread.
thread.join()

yield 'Import finished.\n'
yield '</pre></body></html>'

5

	Streamable log in browser
	Usage
	Simplest example with built-in Python server
	New logging handler
	Primitive HTTP request handler
	Django implementation

